学术看板
学术看板

讨论M_0集的定量逼近性质


来源:数学与统计学院   |  文字:冯妍
编辑: 刘晓琪   |  审核:田丽

题 目:讨论M_0集的定量逼近性质

时 间:2025年9月11日(星期四)19:00

主讲人:周青龙

地 点:腾讯会议(会议号809448684)

主办单位:数学与统计学院

主讲人简介:周青龙,武汉理工大学理学院数学系副教授,硕士生导师。主要从事分形几何与动力系统、丢番图逼近与度量数论的研究工作。

讲座简介:

Let E ⊂ [0, 1)^d be a set supporting a probability measure μ with
Fourier decay |u ̂(t)| ≪ (log |t|)^{−s} for some constant s > d + 1. Consider a
sequence of expanding integral matrices A=〖(A_n)〗_(n∈N) such that the minimal
singular values of A_(n+1) 〖A_n〗^(-1)are uniformly bounded below by K > 1. We
prove a quantitative Schmidt-type counting theorem under the following constraints:
(1) the points of interest are restricted to E; (2) the denominators of
the “shifted” rational approximations are drawn exclusively from A. Our result
extends the work of Pollington, Velani, Zafeiropoulos, and Zorin (2022) to
the matrix setting, advancing the study of Diophantine approximation on fractals.
Moreover, it strengthens the equidistribution property of the sequence
〖(A_n X)〗_(n∈N) for μ-almost every x ∈ E. Applications include the normality of
vectors and shrinking target problems on fractal sets.

书记校长信箱